Exponentially accurate error estimates of quasiclassical eigenvalues

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiclassical Dynamics with Exponentially Small Error Estimates

We construct approximate solutions to the time–dependent Schrödinger equation i h̄ ∂ψ ∂t = − h̄ 2 2 ∆ψ + V ψ for small values of h̄. If V satisfies appropriate analyticity and growth hypotheses and |t| ≤ T , these solutions agree with exact solutions up to errors whose norms are bounded by C exp {− γ/h̄ } , for some C and γ > 0. Under more restrictive hypotheses, we prove that for sufficiently smal...

متن کامل

Accurate Error Bounds for the Eigenvalues of the Kernel Matrix

The eigenvalues of the kernel matrix play an important role in a number of kernel methods, in particular, in kernel principal component analysis. It is well known that the eigenvalues of the kernel matrix converge as the number of samples tends to infinity. We derive probabilistic finite sample size bounds on the approximation error of individual eigenvalues which have the important property th...

متن کامل

New A Priori FEM Error Estimates for Eigenvalues

We analyze the Ritz–Galerkin method for symmetric eigenvalue problems and prove a priori eigenvalue error estimates. For a simple eigenvalue, we prove an error estimate that depends mainly on the approximability of the corresponding eigenfunction and provide explicit values for all constants. For a multiple eigenvalue we prove, in addition, apparently the first truly a priori error estimates th...

متن کامل

Accurate eigenvalues of bounded oscillators

We calculate accurate eigenvalues of a bounded oscillator by means of the Riccati–Padé method that is based on a rational approximation to a regularized logarithmic derivative of the wavefunction. Sequences of roots of Hankel determinants approach the model eigenvalues from below with remarkable convergence rate.

متن کامل

A Time–Dependent Born–Oppenheimer Approximation with Exponentially Small Error Estimates

We present the construction of an exponentially accurate time–dependent Born– Oppenheimer approximation for molecular quantum mechanics. We study molecular systems whose electron masses are held fixed and whose nuclear masses are proportional to ǫ−4, where ǫ is a small expansion parameter. By optimal truncation of an asymptotic expansion, we construct approximate solutions to the time–dependent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2001

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/34/6/310